
1 ASCA Version 1.3

The program asca(X, F, interactions, center) does a principle component analysis
on the effect matrices of a data matrix X. The program calculates scores and loadings for
each experimental factor and each interaction that is indicated in the function parameters
(interactions). Only interactions between two factors can be calculated. It is assumed
the data are balanced, i.e. the number of subjects per level is the same. The program does
not check for unbalanced data. Output (scores, loadings singular values, projections and
percentages explained variance) are given in the data structure ASCA. Fields of ASCA
include:

ASCA.data Centered/scaled data matrix

ASCA.design Experimental design vector

ASCA.factors.scores ASCA experimental factor scores

ASCA.factors.loadings ASCA experimental factor loadings

ASCA.factors.projected Projected residuals

ASCA.factors.singular Singular values

ASCA.factors.explained Percentage variation explained

ASCA.interactions.scores ASCA scores interactions

ASCA.interactions.loadings ASCA loadings interactions

ASCA.interactions.singular Singular values

ASCA.interactions.explained Percentage variation explained

ASCA.effects Percentage explained for each effect

The structure elements are cells (except for ASCA.data, ASCA.design and ASCA.effects

which are matrices) that can be accessed by e.g. ASCA.factors.scores{1} for the scores
of the first factor. The program also provides a plotting routine to plot scores and loadings
plots for each experimental factor. It also includes the projection of the residuals (see
Zwanenburg et al. J Chemometrics, Volume 25, (2011), pages 561 - 567).

When we have an experimental design with two experimental factors, α and β the data
matrix X is decomposed in

X = Xavg + Xα + Xβ + Xαβ + E (1)

The data matrix X has N rows corresponding to N observations and J columns corre-
sponding to J variables. The terms in the decomposition have the following meaning:

• Xavg: matrix with column averages in each row

• Xα: matrix with level averages for first factor

• Xβ: matrix with level averages for second factor

• Xαβ: matrix with level averages interaction between factor 1 and factor 2.

• E: matrix with residuals
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The input to the program are the data matrix X, the matrix F that describes the ex-
perimental design, the interactions that are to be included and a parameter to indicate if
centering and/or scaling is wanted. The scaling option includes centering of the data. In
some fields this is known as standardization.

For each factor and interaction the percentages explained by the principal components
are stored in ASCA.factors.explained and ASCA.interactions.explained.

2 Input example

As an example consider an experimental design with two factors, one with two and one with
three levels. Each level has two subjects. In the experiment two variables are measured.
The data matrix X has 12 rows and two columns:

X =



1 0.6
3 0.4
2 0.7
1 0.8
2 0.01
2 0.8
4 1
6 2
5 0.9
5 1
6 2
5 0.7



F =



1 1
1 1
1 2
1 2
1 3
1 3
2 1
2 1
2 2
2 2
2 3
2 3


the matrix F indicates the factor and level each row of X belongs to. The numbers in the
first column of F are the levels for the first factor, the numbers in the second column of F
indicate the levels of the second factor. In general, F has one column for each experimental
factor.

For example, the first row of F is 11 indicating level 1 for the first factor and level 1
for the second factor. The first row in the data matrix are thus from a subject that was in
the first level for each factor. The second row in F is also 11, the second row in the data
matrix therefore contains the measurements of a subject that also was in the first level
treatment of both factors. The last row of F is 23 indicating that the last row of the data
matrix contains measurements for a subject that was treated according to level 2 for the
first factor and level 3 for the second factor. After centering, the data matrix X, the effect
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matrices Xα and Xβ and the interaction matrix are found to be:

X =



−2.5000 −0.3092
−0.5000 −0.5092
−1.5000 −0.2092
−2.5000 −0.1092
−1.5000 −0.8992
−1.5000 −0.1092
0.5000 0.0908
2.5000 1.0908
1.5000 −0.0092
1.5000 0.0908
2.5000 1.0908
1.5000 −0.2092



Xα =



−1.6667 −0.3575
−1.6667 −0.3575
−1.6667 −0.3575
−1.6667 −0.3575
−1.6667 −0.3575
−1.6667 −0.3575
1.6667 0.3575
1.6667 0.3575
1.6667 0.3575
1.6667 0.3575
1.6667 0.3575
1.6667 0.3575



Xβ =



0 0.0908
0 0.0908

−0.2500 −0.0592
−0.2500 −0.0592
0.2500 −0.0317
0.2500 −0.0317

0 0.0908
0 0.0908

−0.2500 −0.0592
−0.2500 −0.0592
0.2500 −0.0317
0.2500 −0.0317



Xαβ =



0.1667 −0.1425
0.1667 −0.1425
−0.0833 0.2575
−0.0833 0.2575
−0.0833 −0.1150
−0.0833 −0.1150
−0.1667 0.1425
−0.1667 0.1425
0.0833 −0.2575
0.0833 −0.2575
0.0833 0.1150
0.0833 0.1150



3 Calculating the variation explained

The variation that is explained by the principal components can be calculated from the
singular values. The matrix with singular values is diagonal with the square roots of the
singular values on the diagonal. Let the elements on the diagonal of the singular matrix
be si. The percentage explained for the first principal component, f1 is then:

f1 =
s21∑
i s

2
i

× 100%

In the program asca the singular values are stored in the structure ASCA as:
ASCA.factors.singular{1} for the first factor and
ASCA.factors.singular{2} for the second factor and ASCA.interactions.singular{1}
for the interactions. The first factor only has two levels, hence there is only one principal
component that explains 100% of the variation. The second factor has three levels, and
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Figure 1: Scores and loadings for the two experimental factors for the data X. The scores plots also
include the projected residuals.

therefore two principal components. To calculate the percentage of explained variation we
first get the singular values and apply the above relation:

s = ASCA.factors.singular{2}

s =

0.7083

0.2221

>> f_1 = (s(1)^2/(s(1)^2 + s(2)^2))*100

f_1 =

91.0459

>> f_2 = (s(2)^2/(s(1)^2 + s(2)^2))*100
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f_2 =

8.9541

There are, as expected two singular values, the first explains 91% of the variation in the
data, the second one 9%. Data sets with more variables will have more principal compo-
nents, usually the first few will explain most of the variation. The program supplies the cells
ASCA.factors.explained and ASCA.interactions.explained to return the percentage
explained by the PC’s of each factor and principal component:

>> s = ASCA.factors.explained{1}

s =

100.0000

0.0000

>> s = ASCA.factors.explained{2}

s =

91.0459

8.9541

4 Contribution of the different effects

The percentage each effect (overall mean, factors Xα, interactions Xαβ and residuals E)
contributes to the sum of squares of the data matrix X is given in ASCA.effects and
also part of the standard output of the program. This is possible in ASCA because the
subspaces spanned by the loadings vectors are all perpendicular to each other. Thus, the
sum of squares of the elements of the data matrix can be decomposed as

‖X‖2 = ‖Xavg‖2 + ‖Xα‖2 + ‖Xβ‖2 + ‖Xαβ‖2 + ‖E‖2 (2)

For the example, the results are:

Percentage each effect contributes to the total sum of squares

Overall means

76.3905

Factors

15.0212 0.3154
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Interactions

1.3346

Residuals

6.9383

or as given in ASCA.effects:

>> ASCA.effects

ans =

76.3905 15.0212 0.3154 1.3346 6.9383

5 Score plot of interactions

Score and loadings plots of interactions can be plotted now (as of Version 1.1) with the
function plot_interactions which is default included. The function plots the group
averages for each interaction and labels each group average with the factors that comprise
the group. Projections of the data are included, but these are unmarked to prevent the
plot from cluttering up.
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Figure 2: Scores for the interactions. The group averages (*) are labeled by their contributing factors,
projected data points (o) are unlabeld.
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