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Abstract

Ž .In the present paper, the concept of orthogonal signal correction OSC as a spectral preprocessing method is discussed
and a number of OSC algorithms that have appeared are compared from a theoretical viewpoint. Since all of these algo-
rithms had some problems concerning the orthogonality towards Y, non-optimal amount of variance removed from X, or a

Ž .non-attainable solution, a new direct OSC algorithm DOSC is introduced. DOSC was originally developed as a direct method
solely based on least squares steps that had none of the problems mentioned above. The first practical results with the new
method, however, were not encouraging due to the complete orthogonality constraint. If this orthogonality constraint is loos-
ened, the method improves considerably and simplifies the calibration model for the prediction of Y. q 2001 Elsevier Sci-
ence B.V. All rights reserved.
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1. Introduction

In spectroscopic calibrations where a partial least
Ž .squares PLS or principal component regression

Ž .PCR calibration model is used to predict a product
quality such as a concentration or octane number, it

Žis often encountered that the first component or la-
.tent variable accounts for a very high percentage of

the variation in the spectral data X and only a low
percentage of variation of the product quality Y. If
more components are calculated the calibration model
slowly improves. However, models with a large
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number of components are not desirable in terms of
interpretability and robustness.

w xTo deal with this problem, Wold et al. 1 intro-
Ž .duced orthogonal signal correction OSC . The goal

of OSC is to remove one or more directions in X, or-
thogonal to Y that account for the largest variation in
X. OSC is performed as a pre-processing step to im-
prove the calibration model:

YsXBqE 1.1Ž .

In this work, improving the calibration model is
meant in a broad sense, such that the model is more
parsimonious or that lower prediction errors of Y are
obtained. The OSC method is almost always used to-
gether with a latent variable method such as PLS or
PCR to build the calibration model.

0169-7439r01r$ - see front matter q 2001 Elsevier Science B.V. All rights reserved.
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w xIn Section 5.2 of the paper by Wold et al. 1 , a
remark about a simpler method is given. An optimal
OSC would be to calculate principal components of
the matrix Z, where Z is the X-matrix orthogonal-
ized to Y. These components should describe the
largest variation in X that is orthogonal to Y.

y1T TZsXyY Y Y Y X 1.2Ž . Ž .

or, in case Y is not of full column rank,

ZsXyYYqX 1.3Ž .

Here, Yq is the Moore–Penrose inverse of Y.
Such an approach will lead to a direct method in
which, without iterations, orthogonal components are
obtained as the principal components from Z. How-
ever, it was left to others to work out this approach
because no solution was found for the fact that no Y
values are available for future samples, and there-
fore, no orthogonalization can be performed. Also,
there is no guarantee that Z lies in a subspace of X,
and removing part of Z, e.g. its first PC, from X may
introduce components outside the X-space into the
corrected matrix.

Since the introduction of the OSC method by Wold
et al., a number of different attempts to improve the

w xOSC method have been presented in literature 2–4 .
Furthermore, MATLAB code for an OSC algorithm

w xhas been published on the internet 5 .
In the present paper, a direct orthogonal signal

Ž .correction method DOSC is presented that calcu-
lates directions in X that are orthogonal to Y and ac-
count for the largest variance of X. These directions
are obtained by only using least squares steps and
they provide a theoretically exact solution to the
problem set out by Wold.

In Section 2, first the different OSC methods in-
troduced in the literature are discussed. Similarities
and differences in these methods are addressed. Then
the new DOSC method is introduced and its proper-
ties will be presented. In Section 4, two example data
sets are used to show how DOSC compares to the
other methods. This paper is not meant as a full com-
parison, but it shows some important properties of the
methods.

2. Theory

In this section, the various OSC approaches pre-
sented in the literature are discussed. These are the

w x w xapproaches by Wold et al. 1 , Sjoblom et al. 2 , Wise¨
w x w x w xand Gallagher 5 , Andersson 3 and Fearn 4 . These

names will be used for the corresponding ap-
Ž .proaches. For all cases, it is assumed that X I=J

contains the descriptive variables that are used to
Ž .predict the response Y I=K . Throughout the pa-

per, it is assumed that X and Y have been column-
mean centered. The algorithms will only be dis-
cussed until the step where the OSC component is
deflated from X, and only one OSC component has
been calculated. For notational convenience, P isD

defined as the orthogonal projector onto the column
space of D, i.e. P sDDq, and A as the anti-pro-D D

jector with respect to D-space: A sIyP sIyD D
q Ž .DD . Furthermore, the notation PC X is used to1

denote the first principal component score vector of
X.

2.1. Wold et al.

The approach presented by Wold et al. can be de-
scribed in the following steps:

Ž .1. tsPC X1

2. t)sA tY

3. tsTTqt )

In step 3, a many-component PLS model between
X and t) is built. This means that t) is projected on
the scores T of the PLS model using the projection
matrix TTq or P . This projection matrix, however,T

) Žis only defined if t which changes in every itera-
.tion and the number of PLS components are de-

fined. Repeat steps 2–3 until convergence of t, which
is the score vector of the OSC component.

T Ž T .4. ps t Xr t t
5. XWoldsXy tpT

If more OSC components are needed, steps 1–5
can be repeated again on XWold. For spectra of new
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samples x , the correction is performed by repeat-new

ing the following steps for each OSC component i:

6. t sxT bnew new i

7. xWoldsx y t pnew new new i

where b is a vector of regression coefficients of thei

many-component PLS model in step 3 for the ith
OSC component. In cycling through steps 2–3, an
eigenvector of P A is found satisfying, P A ts t,T Y T Y

or P A tslt if a scaling of the PLS regression co-T Y

efficient in step 3 is assumed.
For a better understanding of the approach by

Wold et al., consider that in step 3, instead of many
components, all PLS components would have been
used, then TTqsXXH or P sP . The solution ofT X

the OSC procedure then satisfies P A ts t, orX Y

P A tslt if a scaling of the PLS regression coef-X Y

ficient in step 3 is assumed. In that case, the proce-
dure is equivalent to canonical correlation analysis
applied to X and A , as is shown below.Y

The solution for the canonical weight vectors c
Ž .and q in canonical correlation analysis for two data
sets X and Y, both of full column rank, is obtained
from solving the following generalized eigenvalue

Ž . w xproblem and a similar one for the Y-weights 6 :

y1T T T TX Y Y Y Y XcslX Xc 2.1Ž . Ž .

Ž T .y1Pre-multiplying both sides by X X X and
writing tsXc leads to

y1 y1T T T TX X X X Y Y Y Y tslt 2.2Ž . Ž . Ž .

or

P P tslt 2.3Ž .X Y

Ž .The canonical variate score vectors therefore are
the eigenvectors of P P . In fact, they are the solu-X Y

tion of the symmetrical eigenproblem P P P tsltX Y X

since tsP t. The weights c follow from regressingX

t on X, i.e. csXqt. By interchanging X and Y in the
above expressions the solution for canonical Y
weights q and scores u is obtained. Canonical corre-
lation analysis can therefore be seen as dealing with
eigenproblems involving products of orthogonal pro-

jection matrices onto the two spaces involved. Hence,
Wold’s approach for finding OSC directions boils
down to a canonical correlation analysis of X and the

Ž .orthogonal complement of Y A , if all PLS com-Y

ponents are chosen to calculate the projection TTq in
step 3, and if X and Y are of full column rank.

Only the spaces spanned by the columns of T and
Ž .A play a role, not the co variance structures as PY T

and A carry no information about this. The matrixY

product P A only carries information about the in-T Y

ter-correlation structure of T and A . This means thatY

the OSC method is not implicitly looking for direc-
tions that describe large variance in T.

In the last paragraph of their paper, the authors al-
ready remark that if I-J, there are many solutions.
In that case, P A has multiple eigenvalues equal toT Y

1 and some smaller than 1. This means that there is
no dominant eigenvalue and many equivalent solu-
tions can be found. However, the solution found is

Ž .one close to the starting vector PC X , and therefore1

this solution describes X rather well. Furthermore,
because of step 3, t is the PLS fit of t) to X and
therefore it will also account for a large part of the
variation in X.

In the case that I-J, Y will always be in the X-
space and t) will also always be in the X-space.
However, t is likely to be different from t) , due to
the PLS regression in step 3, which may cause t to
be correlated to Y. If Iy1)J, A t may not be inY

X, and thus not attainable from X. In that case t will
surely be different from t) and as a result t might not
be orthogonal to Y. If t is not orthogonal to Y, infor-
mation in X that is relevant to predict Y will be re-
moved.

2.2. Sjoblom et al.¨

w xThe algorithm presented by Sjoblom et al. 2 , can¨
be described in the following steps

Ž .1. tsPC X1

2. t)sA tY
T ) 5 53. wsX t , wswr w

4. tsXw
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Repeat steps 2–4 until convergence of t).

5. Find t))sTTqt ) using PLS model based
on 15 PLS components

T )) Ž ))T )) .6. psX t r t t
Sjöblom )) T7. X sXy t p

In step 5, a PLS model with 15 components is
calculated between t) and X. t) is projected on the
scores T of the PLS model in the same way as in the
approach by Wold et al. Here, t)) is the score vec-
tor of the OSC component. More OSC components
can be obtained by repeating the whole procedure

Sjöblomstarting with X . For spectra of new samples
x , the correction is performed by repeating thenew

following steps for each OSC component i:

8. t))sxT bnew new i
Sjöblom ))9. x sx y t pnew new new i

where b is the PLS regression coefficient of the 15-i

component PLS model in step 5 for the ith OSC
component. Repeated application of steps 2–4 leads
to lt)sA XXTt) , so this algorithm establishes aY

sequence of A and XXT applied to the starting vec-Y

tor. In other words, it finds the dominant eigenvector
of A XXT. In this case, a dominant solution existsY

and thus only one solution is found. Since t) lies in
the space of A , t) is orthogonal to Y and we mayY

write ltsA XXTA t) , which means that t) is theY Y
) Ž .first PCA score vector of A X: t sPC A X .Y 1 Y

Now, t) is orthogonal to Y but may not be in the
X-space. Therefore, steps 5 and 6 are applied. Here,
a 15-component PLS model is built between X and
t) to project t) on T; t))sP t) , so t)) lies inT

the X-space, but t)) may be unequal to t) and thus
t)) may not be orthogonal to Y.

)) Ž Ž ..Concluding, t sP PC A X , meaning thatT 1 Y

t)) is the first PC score vector of A X, t) , pro-Y

jected on T, thus the variance described by t) is
taken into account. This means that the algorithm
looks for OSC solutions t) that start out to be or-
thogonal to Y and account for the largest part of the
variance in X. However, in the end, t)) may not be
orthogonal to Y.

2.3. Wise and Gallagher

The approach by Wise and Gallagher is basically
the same as the approach of Sjoblom et al., but they¨
try to cure for the non-orthogonality problem
in Sjoblom’s OSC solution. Therefore a last step¨
was added to orthogonalize t)) to Y, t))) s

Ž Ž ..A P PC A X . The loading p then equals, psY T 1 Y
T ))) Ž )))T ))) .X t r t t . The problem with this cure

is that if Iy1)J, there is no guarantee that the so-
lution t))) lies in the X-space, and thus removing
t))) from X may introduce components outside the
X-space into the corrected matrix. The approaches
chosen by Sjoblom et al. and Wise and Gallagher lead¨
to a dilemma, where either the OSC solution is not
orthogonal to Y, or it does not lie in the X-space, de-
pending whether the last step is a projection on X or
an anti-projection on Y. For the correction of new
spectra of new samples x , the following steps arenew

repeated for each OSC component i:

t))sxT bnew new i

xWisesx y t))pnew new new i

where b is the PLS regression coefficient of thei

many component PLS model in step 5 for the ith OSC
component. Note that for new data, t)) is calculatednew

from the PLS model in step 5, but t))) cannot benew

obtained since A t)) is undefined for future sam-Y new

ples. The loadings p , that correspond to scores t)))

i new

are used in combination with t)) to remove the OSCnew

component from x . This removal is thereforenew

non-optimal.

2.4. Andersson’s direct orthogonalization

Andersson’s approach is as follows:

1. ZsA XY
T Ž .2. Zs t p qE using PCAZ Z

3. t sXpX Z

4. X DO sXy t pT
X Z
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If more OSC components are needed, this can be
adjusted in the PCA in step 2. For spectra of new
samples x , the correction is performed as follows:new

5. t sxT pnew new Z

6. x DO sx y t pnew new new Z

Ž .In step 2, PC A X provides the score t andY Z

loading p . However, A X may not lie in the X-Z Y

space when Iy1)J and thus the loadings do not
necessarily describe a direction in X. In step 3, X is
projected on the loadings of A X providing t .Y X

However, t has no clear distinct properties. It doesX

not describe the largest variance in X orthogonal to
Y, and it also may not be orthogonal to Y. Further-
more, the deflation in step 4 is not optimal because
loadings p are obtained from the PCA on Z insteadZ

of X. This might be improved with using p insteadX
T Ž T .y1of p , where p sX t t t . This, however,Z X X X X

does not solve the problem of non-orthogonality.

2.5. Fearn

w xFearn 4 poses the OSC problem as follows:

1. tsXr
Ž T . T T2. max t t , subject to r rs1 and t Ys0.

The solution of r is obtained as the eigenvector of
A T XT X corresponding to the largest eigenvalue.X Y

Ž T .TThus, tsXPC A X X , which clearly lies in the1 X Y

X-space.

T Ž T .3. psX tr t t
4. X FearnsXy tpT

A second OSC component can be calculated using
the same steps and starting with X Fearn as X. For
spectra of new samples, x , the correction is per-new

formed by repeating the following steps for each of
the i OSC components:

5. t sxT rnew new i

6. x Fearnsx y t pnew new new i

In this approach, a score vector t in X-space is
found that is orthogonal to Y and has maximum

Žvariance subject to the weight vector r having unit
.norm . Due to the orthogonality constraint, this di-

rection is usually different from the one that ac-
counts for the largest variance in X. In Appendix A,
the relation between Fearn’s approach and DOSC is
presented.

2.6. Problems with OSC

In the latent variable methods such as PLS or PCR,
both the measurement error in Y and in X are taken
into account to come up with a robust calibration
model. However, in OSC the measurement error in Y
is fully disregarded because absolute orthogonality is
demanded for the OSC components in X. This con-
flict has manifested itself in such a way that com-
plete orthogonality is not obtained by some of the

Žmethods presented in literature Wold et al. and
.Sjoblom et al., Andersson or the final OSC compo-¨

Žnent does not lie in the X-space Wise and Gal-
.lagher, Andersson . The latter introduces new com-

ponents outside the X-space into the corrected matrix
when the OSC component is deflated. Fearn’s
method, which uses only least squares steps does not
have these problems, but is suboptimal in describing
the maximum variance of X with the OSC compo-
nent.

( )3. Direct orthogonal signal correction DOSC

Ž .The direct orthogonal signal correction DOSC
approach is solely based on least squares steps. It will
always find components, which are orthogonal to Y,
that describe the largest variation of X.

The first step of DOSC is to decompose Y into two
ˆorthogonal parts, the projection of Y onto X, Y, and

the residual part, F that is orthogonal to X:

ˆ1. YsP YqA YsYqFX X

Next, X is decomposed into two orthogonal parts,
ˆone part that has the same range as Y and another part

that is orthogonal to it:

2. XsP XqA Xˆ ˆY Y
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Note that for spectral data commonly J) I, in
ˆwhich case YsY and then X may be orthogonal-

ized directly with respect to observed Y, as in step 3.

3. XsP XqA X for J) IY Y

For non-spectral data where J- I, however, it is
ˆ ˆessential to project X on Y rather than on Y, since Y

sP Y is in the range of X, and so is A XsXyˆX Y

P X. The columns of A X therefore span a sub-ˆ ˆY Y
ˆ ˆspace of X that is orthogonal both to Y and to YsY

qF, since F is also orthogonal to X.
Having found this orthogonal subspace A X,Ŷ

PCA is now applied to find the principal component
t corresponding to the largest singular value. If more
DOSC components are necessary, more principal
components can be obtained in this step. t is a basis
for the one-dimensional subspace that accounts for
maximum variance of A X. This then is the soughtŶ

for one-dimensional subspace of X that is orthogonal
to Y and accounts for the maximum possible vari-
ance of X. We finally express the directions t as lin-
ear combinations of X:

4. tsXr

with

5. rsXqt

where Xq is the Moore–Penrose inverse of X. The
large-variance zero-correlation part of X that we do
not use in subsequent regression modeling is re-
moved from the data:

D O SC Ž T .y 1 T6. X s X y P X s X y t t t t Xt

sXy tpTsXyXrpT

with

T Ž T .y17. psX t t t

For spectra of new samples x , the correctionnew

can be performed as follows:

8. x DOSCsx yrTx pnew new new

Now x DOSC can be used in the calibration modelnew

instead of x to predict y .new new

Note that in step 5, in order to calculate the weight
vector r, the Moore–Penrose inverse Xq is used. This
specific inverse is exact meaning that t exactly equals
Xr. The DOSC approach was implemented and tested
on some spectral data sets, as discussed in Section 4.
However, our first practical results with the new
method were not encouraging. If the spectra are cor-
rected according to the DOSC method, the test set
predictions of Y are worse than if no orthogonal sig-
nal correction is used. This is probably due to the
constraint of complete orthogonality. Even the non-
stable directions in X are used to fit the DOSC com-
ponent t. This leads to an overfit of this DOSC com-
ponent. The problem of overfit can be solved by
loosening the complete orthogonality constraint. The
exact fit of t using the Moore–Penrose inverse Xq in
step 5 is loosened by using a generalized inverse Xy

Ž˜which is not completely exact, i.e. tf tsXr see
. yAppendix B . The generalized inverse X is calcu-

lated using a PCR solution between X and t. In this
case only the stable directions in X are used to de-

˜fine t. The number of principal components for the
PCR solution equals the number of singular values of
X larger than a tolerance factor, which has to be
tuned.

y ˜5a. rsX t, tsXrqe, tsXr˜ ˜ ˜

This leads to

DOSC ˜ T T6a. X sXy tp sXyXrp˜ ˜˜

with

T Ž T .y1˜ ˜ ˜7a. psX t t t˜

˜In step 5a, t is different from t and is allowed to
go slightly out of the A X space. Fig. 1a showsŶ

schematically the effect of loosening the orthogonal-
ity constraint of the DOSC component. In this figure,
the multivariate space defined by the range of X is

ˆpresented together with the projection of Y, Y, in this
space. The first principal component of the space or-

ˆthogonal to Y, which is the DOSC component t, will
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Ž .Fig. 1. a Effect of using only the stable directions of X to deter-
Ž .mine the DOSC component. b Effect of measurement error in Y

on final DOSC component.

have contributions in all directions of X, including the
non-stable directions. Using a PCR-type solution to
fit t, by means of using the generalized inverse Xy,
in step 5a, only the stable directions in X are used.
The part of t that comes from the non-stable direc-
tions in X, t , is removed. This leaves a direc-non-stable

˜tion t which is fitted using only the stable directions
˜in X. However, t lost its property of complete or-
ˆthogonality with Y.

˜Another possible reason why rotating t towards t
leads to better predictions for new data is that the
complete orthogonality constraint disregards the
measurement error in Y. Different from the PLS ap-
proach where latent variables are used to deal with
measurement error in both X and Y, the OSC ap-
proach asks for exact orthogonality with Y. In Fig.

1b, the same multivariate space is presented as in Fig.
ˆ1a, together with both Y and Y. If Y was known

Ž .without measurement error solid line , the DOSC
procedure would lead to the DOSC component t No

. This component will still slightly be present inerror

the non-stable directions, but it will be optimally de-
fined in the stable directions. Due to measurement

Ž .error in Y dotted line , a slightly different DOSC
component, t , is found. This component will beerror

non-optimally defined in the stable directions in X.
˜However, due to the rotation of t to t as de-error

scribed above, the component is allowed to change to
more robust directions of X.

A combination of the effects described above will
be the reason for the improved test set predictions as
will be presented in Section 4. However, this prob-
lem is still not completely understood and further re-
search is necessary.

A different approach to calculate a direct orthogo-
nal signal correction was developed at the same time.
This approach, however, turned out to be equal to
DOSC. Appendix A shows this approach and the
proof for equality. This alternative approach is shown
for a better understanding of the problem and its so-
lution.

3.1. Tuning of DOSC

A problem in applying any orthogonal signal cor-
rection method is to optimally tune the system. First
of all, for each calibration model the optimal number
of OSC components and the optimal number of PLS
components have to be determined. Furthermore,
there is another meta-parameter to tune. This param-
eter is in the approaches of Wold et al., Sjoblom et¨
al., and Wise and Gallagher, the number of PLS
components used to calculate each OSC component
Žsee step 3 of Wold’s approach and step 5 in Sjoblom¨

.et al. and Wise and Gallagher . Although Wise and
Gallagher and Sjoblom et al. both give default values¨
for this number, it can be tuned to minimize predic-
tion errors. In DOSC, the optimal generalized in-
verse, using the optimal number of PCR compo-
nents, has to be picked. It does not seem a good idea
to do a full cross validation to find optimal values for
each of the meta-parameters. Wold et al. already
started some discussion on the number of OSC com-
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ponents to choose. The number of OSC components
should not be too high, since this might lead to over-
fit of the model. One or two OSC components are
usually sufficient. The first OSC component often re-
sembles a base-line correction and the second can

w xcorrect for multiplicative effects 1 .

4. Results and discussion

In this section, two applications will be presented
where different types of OSC methods are used to
remove parts of the spectral data to improve the cali-
bration model. Improvement of calibration models
means that the prediction is improved or that the
model needs less latent variables to obtain the same
prediction quality.

4.1. Prediction of Õiscosity of diesel fuels

The first application deals with the NIR spectra of
diesel fuels. These spectra have been measured at

Ž .Southwest Research Institute SWRI on a project
sponsored by the U.S. Army. The data were obtained

Žfrom the Eigenvector Research homepage www.ei-
.genvector.com . The training set consists of NIR

spectra of 136 diesel fuels. The viscosity of the diesel
fuels was obtained using a separate measurement. The
test set consists of 116 diesel fuels.

A PLS calibration model was developed between
the mean centered NIR spectra of the training set of
diesel fuels and the viscosity of the fuels. A large
number of components were necessary for a good
prediction of the viscosity. Fig. 2 shows the root mean

Ž .squared error of prediction RMSEP of the viscosity
of the fuels of the test set versus the number of PLS
components of the calibration model. After 12 PLS
components, the RMSEP did not decrease further. In
order to decrease the large number of components,
OSC components were calculated and removed from
the spectral data. In this case for all methods, only one
OSC component is calculated, because the aim of this
paper is to show the differences between the OSC
components of the different methods, and not to min-
imize the prediction error of the product quality.
Table 1 shows the results obtained for the different
OSC methods. The percentage of variation removed
from the training set as well as from the test set are

Fig. 2. RMSEP values of the viscosity prediction of diesel fuel
samples using PLS models with 1–12 components after one OSC
component has been removed using different OSC methods.

given, and the correlation of the OSC component with
the Y variable is given. This correlation is presented
to show that some methods remove parts of X that are
correlated with Y.

The results in Table 1, show that DO and the ap-
proach of Sjoblom et al., give OSC components that¨
are somewhat correlated with Y. The percentage of
variation of X removed is the highest for DO and
OSC Sjoblom, but this is probably due to the fact that¨
the orthogonal constraint is not fully applied. The so-
lution given by Fearn clearly removes the lowest
percentage of variation.

Using only one OSC component, the minimum
RMSEP is obtained at a lower number of compo-
nents compared to the case when no OSC is used. The
RMSEP profiles obtained using the Wold, DO or the
Fearn approaches, follow the RMSEP profile of the
standard PLS model without using OSC, except the
RMSEP values are shifted one PLS component to the
left. This means that one PLS component is replaced
by one OSC component. The total number of compo-
nents remains equal, which means that the models are
not simplified. The gain using the Wise and Sjoblom¨
approaches is much larger. The minimum RMSEP,
which is even lower than the minimum RMSEP
without using OSC, is already obtained after six PLS
components. The standard DOSC approach with the
Moore–Penrose inverse has some prediction prob-
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Table 1
The results of the different OSC transformations using only one
OSC component for the diesel fuel data

Method % Removed Correlation of % Removed
from training OSC component test set
set with Y

y7OSC Wold 89.30 2=10 90.07
y2DO 90.20 8=10 90.87

OSC Wise 89.55 0 90.11
y3OSC Sjoblom 89.60 3=10 90.10¨

Fearn 88.12 0 88.72
DOSC 89.58 0 89.90

) y3DOSC 89.60 3=10 90.14

lems. The RMSEP only drops to 0.14, which is much
higher than the minimum RMSEP for all other meth-
ods. If, instead of the Moore–Penrose inverse, an-

Žother generalized inverse is used here the tolerance
) y3.for DOSC is set to 1=10 then the RMSEP is

even lower than that of the Wise and Sjoblom ap-¨
proaches. This DOSC) method, however, loosens the
orthogonality constraint which leads to a correlation
of 0.003 with between the DOSC) component and Y.
The results of the Sjoblom approach and DOSC) are¨
very similar. Both methods have the same correlation
with Y, the variation removed in both the training and
the test set are similar as well as the RMSEP values
of the prediction of the viscosity of the test set sam-
ples.

The tolerance factor used to calculate the general-
ized inverse of X in the DOSC approach is a critical
value. It determines the number of singular vectors,
or PCR components of X, that are used in calculating
the generalized inverse in step 5a of the DOSC ap-
proach. If a generalized inverse Xy is used to calcu-

˜ ˜late r, t is unequal to t. This also means that t is not˜
necessarily orthogonal to Y. The results in Table 1
and Fig. 2 were obtained with a tolerance factor of
10y3. In that case 24 singular vectors and values were
used to calculate the inverse. Table 2 shows some re-
sults when the tolerance factor is changed.

If the tolerance is increased from 10y6 to 5=
10y2 , the number of singular values used to calcu-
late the inverse decreases from 135 to 2. Here, the
generalized inverse XI with tolerance of 10y6 equals

Ž . qthe Moore–Penrose MP inverse X . If the toler-
˜ance is increased, then t slowly moves away from t.

˜The squared correlation, between t and t decreases.
˜This causes the correlation between t and Y to in-

crease up to 0.07. The percentage variation removed
by the OSC component increases, but this is because
the orthogonality constraint is loosened.

Fig. 3 shows the RMSEP of the test set for differ-
ent values of the tolerance. A tolerance of 10y3 in this
case is clearly the optimal value, however for new
data sets the tolerance factor should be tuned prop-
erly. This means that allowing some correlation be-
tween the OSC component and Y gives better predic-
tions for a separate test set.

The methods of Wold et al., Sjoblom et al., and¨
Wise and Gallagher all use a PLS model of X to cal-

Žculate PLS regression coefficients b see Section 2.1
.step 3 and Section 2.2 step 5 . This b is obtained by

calculating a many-component PLS model between X
and t) , to make sure that the solution is in the X-
space and that the solution accounts for a large part
of the variation in X. Sjoblom et al. use 15 compo-¨
nents for the PLS model, and Wise and Gallagher
want to describe at least 99.9% of the variation in X

Ž .with the PLS model which is the default setting . For
this specific data set this comes down to use 13 PLS

Table 2
The effect of tolerance in calculating the generalized inverse of X on the correlation with Y and the percentage of X explained of the diesel
fuel data

Tolerance % Removed from Correlation of OSC a Singular vectors Squared correlation % Removed
˜training set component with Y and values used to between t and t from test set

calculate inverse

MP 89.58 0 135 1.0000 89.90
y4 y31=10 89.59 1=10 67 0.9999 89.98
y3 y31=10 89.60 3=10 24 0.9997 90.14
y2 y21=10 89.73 2=10 7 0.9982 90.30
y2 y25=10 90.13 7=10 2 0.9938 90.81
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Fig. 3. RMSEP values of the viscosity prediction of diesel fuel
samples using PLS models with 1–12 components after one OSC
component has been removed using DOSC with different toler-
ance factors.

components. Wold et al. do not describe precisely
how many components are used to calculate the PLS
inverse. For the results obtained in this paper, 10 PLS
components were used.

The DOSC) approach with tolerance 10y3 uses
24 singular vectors or PCR components of X to cal-
culate the generalized inverse Xy. This is somewhat
more than Sjoblom et al. and Wise and Gallagher use.¨
However, the correlation of the OSC component and
Y is comparable to the results of Sjoblom et al., and¨
also the percentages explained in both training set and
test set are comparable.

4.2. Prediction of moisture content of corn samples

For the second application, NIR spectra of corn
samples were obtained to predict the moisture con-
tent of the corn. These spectra were also obtained
from the Eigenvector Research homepage. The
wavelength range is 1100–2498 nm at 2-nm inter-

Ž .vals 700 channels . The moisture, oil protein and
starch values are measured for each of the samples.
The data was originally taken at Cargill.

Spectra of 80 corn samples are available. These
Ž .were divided into a training set 47 samples and a

Ž .test set 31 samples , and two samples were rejected
as outliers. The spectra used in this example were

Fig. 4. RMSEP values of the moisture prediction of corn samples
using PLS models with 1–12 components after one OSC compo-
nent has been removed using different OSC methods.

obtained from spectrometer mp5 and the moisture in
the corn samples was used as the response variable.
A PLS model between the mean centered spectra and
the moisture of the corn samples was built. Fig. 4
shows the RMSEP values for the prediction of the
moisture for the corn samples in the test set when one
OSC component was removed from the spectra.
Without OSC, the minimum RMSEP value of 0.13 is
obtained for a PLS model with 10 components. If one
OSC component is removed using the approaches of
Wold, Fearn and the DO approach, the same RMSEP
level is obtained with only a nine-component PLS
model. Again the calibration model is not simplified
because the total number of components is still 10.

Table 3
The results of the different OSC transformations using only one
OSC component for the corn data

Method % Removed Correlation of % Removed
from training OSC component test set
set with Y

y8OSC Wold 59.74 5=10 54.40
y1DO 98.96 6=10 99.12

OSC Wise 58.90 0 57.39
y2OSC Sjoblom 65.75 2=10 69.77¨

Fearn 31.64 0 35.24
DOSC 64.98 0 69.14

) y2DOSC 65.63 1=10 70.06
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Fig. 5. RMSEP values of the moisture prediction of corn samples
using PLS models with 1–12 components after one OSC compo-
nent has been removed using DOSC with different tolerance fac-
tors.

The approach of Wise does not work well in this ex-
ample, but that may be improved by tuning it prop-
erly. The standard DOSC approach with a Moore–
Penrose gives an RMSEP of 0.18, but if it is tuned

y3 Ž ) .properly with a tolerance of 10 DOSC the min-
imum RMSEP level of 0.13 is already obtained with
a one-component PLS model. Again the approach of
Sjoblom gives results similar to DOSC) , for the¨
variance removed in both training and test set, the
correlation with Y and the RMSEP values for the
prediction of the moisture content. These results are
presented in Table 3.

Fig. 5 shows the RMSEP values of the moisture
prediction in corn samples when the DOSC approach

is tuned. The minimum RMSEP value of 0.13 is ob-
tained for a tolerance value of 10y3 or higher. How-
ever if the tolerance is higher than 10y3, more PLS
components are needed to reach this minimum value.
Again the optimal tolerance is found to be near 10y3.
Table 4 shows some results for the different toler-
ance values. The results are similar to the ones ob-
tained in the previous application. If the tolerance is

˜increased, the squared correlation between t and t
decreases. This results in an increasing correlation
between the DOSC component and the response
variable. However, allowing a small correlation im-
proves the prediction of the moisture content of the
corn samples and it also reduced the number of PLS
components necessary in the calibration model.

4.3. The orthogonality constraint

The orthogonality constraint, which is the basis for
the OSC approach is loosened in some methods. If the
OSC component is correlated with Y, information
that can be relevant to predict Y is removed from X.
This will probably lead to a lower fit of Y in the re-
sulting PLS model. However, for the prediction of Y
for new samples this is not necessarily true. In the
results presented above it is shown that if a small
correlation between the DOSC) component and Y is
allowed, the prediction error for new samples de-
creased considerably. The reason for this effect will
be a combination between not using the non-stable
directions in X and taking the measurement error of
Y into account, as described in more detail at the end
of Section 3.

Table 4
The effect of tolerance in calculating the generalized inverse of X on the correlation with Y and the percentage of X explained of the corn
data

Tolerance % Removed from Correlation of OSC a Singular vectors Squared correlation % Removed
˜training set component with Y and values used to between t and t from test set

calculate inverse

MP 64.98 0 46 1.0000 69.14
y4 y37=10 65.32 7=10 42 0.9949 69.15
y3 y21=10 65.63 1=10 35 0.9901 70.05
y2 y21=10 67.04 4=10 12 0.9683 69.13
y1 y11=10 73.95 2=10 3 0.8621 56.09
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5. Conclusion

In this paper the OSC approach is discussed and
five methods are compared. Since all of these meth-
ods had some problems, a new direct orthogonal sig-
nal correction method, DOSC, was introduced. DOSC
calculates components that are orthogonal to Y and
describe the largest variation in X. The method is de-
veloped using only simple least squares steps. How-
ever, it became clear that a complete orthogonality
constraint is too strict, since this leads to the use of
non-stable directions in X. Furthermore the measure-
ment error in Y is disregarded. This leads to an over-
fit of the DOSC component and therefore predictions
for a separate test set can become worse than without
using DOSC. One approach to loosen the complete
orthogonality constraint is presented and this im-
proves the method considerably.

Two applications are shown where DOSC is used.
In both cases the optimal number of PLS compo-
nents in the final calibration model was reduced con-
siderably by using only one DOSC component. This
means that the total calibration model is simplified
because the total number of components used is de-
creased. This was not the case for all OSC methods
discussed in this paper. Large reductions of predic-
tion error however, were not observed for any of the
methods.

Acknowledgements

The authors want to thank Scott Hutzler of South-
west Research Institute, Mike Blackburn at Cargill
and Barry Wise of Eigenvector Research for provid-
ing the diesel fuel and corn data.

Appendix A

A.1
Development of DOSC from another starting

point. The alternative DOSC selects a direction t in
X, orthogonal to Y, that describes the largest varia-

tion in X. This direction will be removed from X. The
following minimization has to be solved.

5 T 5 2 T� 4min Xy tp , s.t. Y ts0 ,
t,p

or

5 T 5 2 T� 4min XyXwp , s.t. Y Xws0 A.1Ž .
w,p

Firstly, it will be proven that Y T Xw equals
ˆ TY Xw.

TT q T q TŶ Xws XX Y XwsY XX XwsY XwŽ .

Ž .Thus problem A.1 can also be written as:

T 2 ˆ T5 5 � 4min XyXwp , s.t. Y Xws0 A.2Ž .
w,p

The constraint on the direction Xw to be orthogo-
ˆnal to Y can be expressed directly by forcing the di-

ˆrection to come from the part in X orthogonal to Y,
ˆ Ti.e. from A Xw. Y A equals 0 by definition.ˆ ˆY Y
Ž .Thus, problem A.2 can be written as:

5 T 5 2min XyA Xwp A.3Ž .Ŷ
w,p

Ž .In step 2 of the DOSC Section 3 , X is divided
into two orthogonal parts, A X and P X. Since theˆ ˆY Y

direction A Xw lies in the range of A X it can neverˆ ˆY Y
Ž .describe variation in P X. Therefore problem A.3Ŷ

is equivalent to solving

5 T 5 2min A XyA Xwp A.4Ž .ˆ ˆY Y
w,p

which equals the DOSC approach described in Sec-
tion 3.

A.2. Relation of DOSC with Fearn’s approach

Consider the following minimization problem

5 T 5 2min XyXww , s.t.
w

� T T 4Y Xws0,w ws1 A.5Ž .
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This solution to this problem can be rewritten as fol-
lows, where in each step the same constraints are ap-

Ž .plied as in equation A.5 :
TT Tmin tr XyXww XyXwwŽ . Ž .½ 5

w

s min tr XT X y tr XT XwwT� Ž . Ž .
w

ytr wwT XT X q tr wwT XT XwwT 4Ž . Ž .
s min tr XT X y2tr wT XT Xw� Ž . Ž .

w

ytr wT wwT XT Xw 4Ž .
s min tr XT X y tr wT XT Xw� 4Ž . Ž .

w

s max tr wT XT Xw , s.t.� Ž .
w

� T T 4Y Xws0,w ws1 4
The latter formulation is exactly the one intro-

duced by Fearn. Conversely, Fearn’s approach can be
Ž .viewed as solving problem A.5 . Following, the

same reasoning as in Appendix A.1 we may rewrite
Ž .A.5 as follows:

5 T 5 2 Tmin A XyA Xww , s.t. w ws1 A.6Ž .ˆ ˆY Y
w

Ž .The problem in Eq. A.6 equals the DOSC prob-
Ž .lem A.3 with two additional restrictions being ps

< <w and w s1. Therefore the variation described by
the OSC solution given by Fearn will at best be equal
to DOSC, but in most cases it will be lower.

Without the orthogonality constraint, problem
Ž .A.5 would equal a PCA on X. With the constraint
active, the method finds the direction with the maxi-
mum variance, subject to the weight vector w having
norm 1, in X orthogonal to Y. Due to the constraint,
in many cases this direction will be different from the
direction that accounts for the largest variation in X.

Appendix B

The generalized inverse Xy, can be calculated us-
ing the singular value decomposition of X. If

D 0 TXsU V B.1Ž .
0 0

then
y1D Ey TX sV U B.2Ž .
F G

is a generalized inverse of X for all choices of E, F
w xand G with the correct sizes 7 . In this application

E, F and G are set to zero, and the singular values
smaller than the tolerance value are set to zero in D.
This generalized inverse corresponds to a PCA solu-
tion of X, where the number of principal components
used equals the number of singular values larger than
the tolerance factor. If all nonzero singular values in
D are used to calculate the generalized inverse, then
this equals the Moore–Penrose inverse.

References

w x1 S. Wold, H. Antti, F. Lindgren, J. Ohman, Orthogonal signal
correction of near-infrared spectra. Chemometrics and Intelli-

Ž .gent Laboratory Systems 44 1998 175–185.
w x2 J. Sjoblom, O. Svensson, M. Josefson, H. Kullberg, S. Wold,¨

An evaluation of orthogonal signal correction applied to cali-
bration transfer of near infrared spectra. Chemometrics and In-

Ž .telligent Laboratory Systems 44 1998 229–244.
w x3 C.A. Andersson, Direct orthogonalization. Chemometrics and

Ž .Intelligent Laboratory Systems 47 1999 51–63.
w x4 T. Fearn, On orthogonal signal correction. Chemometrics and

Ž .Intelligent Laboratory Systems 50 2000 47–52.
w x5 B.M. Wise, N.B. Gallagher, http:rrwww.eigenvector.comr

MATLABrOSC.html.
w x6 R. Gittins, Canonical Analysis. A Review with Applications in

Ecology 1985 Berlin.
w x7 J.R. Schott, Matrix Analysis for Statistics. Wiley, New York,

1997 .


